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Human Contact Prediction

◮ Modeling human mobility is a challenging but interesting
problem.

◮ Knowing how people move can help us in:
◮ Designing efficient routing algorithms for DTNs.
◮ Proposing accurate human mobility models.
◮ Designing mobile social applications.
◮ Traffic planning in cities.
◮ Modeling epidemic disease.
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Human Contact Prediction Problem

◮ We say two people are in contact if they are in each other’s
proximity (< 10m).

◮ A contact can be detected by a wireless sensor (Bluetooth).

◮ A contact has time/spatial information.

◮ Predicting where and when people are going to contact each
other is an interesting problem.

◮ For this we need to collect contact trace data.
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Why predicting human contacts?

◮ Researchers have studied the properties of human mobility by
using real data.

◮ There are several available contact traces which are collected
by Bluetooth sensors.

◮ MIT Reality Mining, Infocom 05/06, Rollernet, and
Cambridge datasets are few examples.

◮ All of these real datasets contain contacts among only a
limited number of nodes.
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Our Observations

◮ MIT dataset only includes contacts among 100 nodes.
◮ Issue: not everybody carries a wireless sensor (price/technical

issues).
◮ However, most of people carry their cellphones.
◮ We have found that most of real datasets contain a large

number of contacts from cellphones.
◮ Cellphones cannot record any contacts.
◮ Therefore, a large portion of contacts are missing.
◮ How can we infer the contacts among cellphones (i.e. external

devices)?
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Reconstructing the Contact Graph

Definitions and Assumptions

◮ A contact event between two nodes u and v is shown by a
quadruple (u, v , ts , te).

◮ Internal nodes: nodes which carry sensor devices (Vint).
◮ External nodes: Bluetooth enabled devices (cellphones and

PDAs: Vext).
◮ Contact events among people can be shown by a directed

graph called Contact Graph.
◮ In contact graph G = (V ,E ), V is the set of nodes and E is

the set of contacts among people.
◮ We assume that V = Vint ∪ Vext .

Kazem Jahanbakhsh, Valerie King, and Gholamali C. Shoja Predicting Missing Contacts 7/ 29



Outline
Introduction

Problem Definition
Related Work

Our Approach to Human Contact Prediction
Performance Evaluation

Conclusions and Future Work
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Reconstructing the Contact Graph

◮ We assume only internal nodes can sample contacts.

◮ All edges in Eknown ⊂ Vint × (Vint ∪ Vext) are known.

◮ All edges in Eunknown ⊂ Vext × Vext are missing.

◮ Our problem is to infer the edges among external nodes
(edges in Eunknown).
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Related Work

◮ Several human mobility models have been proposed:
community-based mobility model by Musolesi et al.

◮ Daly et al. and Hui et al. proposed routing algorithms which
exploit contact graphs properties.

◮ Nowell and Kleinberg have studied the problem of link
prediction in citation networks.

◮ Goldberg et al. have used cohesive neighborhoods between
proteins for assessing the confidence of observed interactions
among them.

◮ Our work is the first one that addresses contact prediction
problem in the context of mobile social networks.
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Contact Graph Properties

◮ We can compute the contact probability among people by
exploiting contact graph properties:

◮ Time-Spatial locality: exploiting time-spatial properties of
contact graphs.

◮ Popularity: exploiting the contact rates of mobile nodes.

◮ Social similarity: using offline social information about
people who carry wireless devices.
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Number of Common Neighbors and Geographical Proximity
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Figure 1: The effect of common neighbors on geographical proximity
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Measuring Geographical Closeness

◮ We can compute the geographical closeness between two
nodes by analyzing their neighbor sets over time.

◮

simk
ncn(u, v) =

∣

∣

∣
Nk(u) ∩ Nk(v)

∣

∣

∣
(1)

◮

simk
jac(u, v) =

∣

∣Nk(u) ∩ Nk(v)
∣

∣

|Nk(u) ∪ Nk(v)|
(2)

◮

simk
min(u, v) =

∣

∣Nk(u) ∩ Nk(v)
∣

∣

min(|Nk(u)| , |Nk(v)|)
(3)
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Popularity

◮ Preferential attachment: in social networks the probability of
connection is proportional to nodes’ degrees.

◮ Contact rates of mobile nodes play a similar role as node
degrees in social networks.

◮ We assume that the contact probability between two nodes is
proportional to the product of their contact rates:

◮

simk
pop(u, v) = λu.λv (4)

◮ λu: the number of contacts of node u during time interval Λk .
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Social Profiles (Infoccom 2006)

◮ The social profiles contain information about 6 different social
dimensions.

◮ Each social dimension can be shown with a set of social
features.

◮ Suppose node u speaks English and Spanish.

◮ Let us denote English and Spanish with 1 and 2 respectively.

◮ We can show the spoken languages of node u with a feature
set Γu = {1, 2}.
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Jacard Social Similarity

◮ Social similarity between two nodes with respect to dimension
i can be computed by using Jacard index:

◮

σi
jacard(u, v) =

∣

∣Γiu
⋂

Γiv
∣

∣

|Γiu
⋃

Γiv |
(5)

◮ Total similarity between two nodes is computed as the average
over all dimensions:

◮

simjac(u, v) =

d
∑

i=1

σi
jacard(u, v)

d
(6)
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Foci Social Similarity

◮ The social distance between two nodes u and v can be
defined as the size of the smallest social feature set that
includes both of them:

◮

dfoc(u, v) = min |{F |u, v ∈ F}| (7)

◮ Here, F is the focus set to which both u and v belong.
◮ Using the foci distance, the foci similarity between two nodes

u and v is:
◮

simfoc(u, v) =
1

dfoc(u, v)
(8)
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Reconstruction Algorithm

◮ First, we generate partial contact graph Gk ’s for all k ’s.
◮ Next, we compute the similarity scores between all pairs of

external nodes by using one of our methods.
◮ For each time interval Λk , we obtain quadruples such as

(u, v , k , sim(u, v)).
◮ We store all quadruples in a similarity list (Lsim).
◮ We sort Lsim list in a descending order based on computed

similarity scores.
◮ To infer the missing contacts, we select the first Rank number

of predictions from Lsim.
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Real Data Descriptions

◮ The first two datasets are from Infocom 2005/2006 where 41
and 79 participants attended.

◮ The third dataset is collected at University of Cambridge (36
sensors).

◮ Rollernet dataset contains contacts from a set of people who
participated in rollerblading (62 nodes).

◮ MIT dataset lasted for 9 months and includes contacts among
97 nodes.

◮ All of these datasets were sampled by Bluetooth sensors (e.g.
< 10 meters).
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How to Test Reconstruction Algorithm Using Real Data?

◮ External nodes donot carry any sensors.
◮ There is not any way to validate the predicted contacts

among them.
◮ We can choose a subset of internal nodes and pretend that

they are external nodes.
◮ We call these nodes as surrogates of external nodes.
◮ We remove all the contacts among surrogates.
◮ For our analysis we choose 75% of nodes in random as

surrogates.
◮ We use our prediction methods to infer contacts among

surrogates.
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Simulating Partial Contact Graphs

sim(u,v)

vu

Internal

kG(a) k(b)G’

External Surrogate

Figure 2: Simulating a partial contact graph
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Percentage of True Positives for Infocom 2006
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Figure 3: Percentage of true positives for contact predictions (Info 06)
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Percentage of True Positives for Cambridge
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Figure 4: Percentage of true positives for contact predictions (Camb)
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Percentage of True Positives for Rollernet
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Figure 5: Percentage of true positives for contact predictions (Roller)
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Figure 6: Percentage of true positives for contact predictions (MIT)
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Using Offline Social Profiles

◮ On the next slides, we test the power of social profiles for
contact prediction.

◮ For the first part of our analysis, we assume that we only have
social profiles of nodes in V .

◮ We assume all edges of G are unknown.

◮ The problem is to infer edges in E by only using the social
information of nodes.

◮ Then, we study the performance of combining social
information with proximity data for contact prediction.
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Figure 7: Percentage of true positives for contact predictions using social
data (Info 06)
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Figure 8: Contact probability as a function of social and proximity
information (Info 06)
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Discussion

◮ NCN, Jacard, Min, and Popularity outperform random
predictor.

◮ Methods based on neighborhood similarity perform better
than the popularity method.

◮ For large geographical spaces (MIT) the percentage of true
positives is low.

◮ This is because it is likely to have a subset of external nodes
where there are not any internal nodes in their proximity.

◮ Using social data without any time-proximity information is
still helpful for contact prediction task.

◮ Foci similarity better reflects people mobility in a conference.
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Conclusions and Future Work

◮ We have studied the problem of contact prediction in the
context of mobile social networks

◮ Our results show that time-spatial based scores provide the
most reliable results.

◮ We have shown that combining social information with
time-spatial information provides better performance results.

◮ Our methods allow researchers to study properties of large
scale contact graphs by sampling contacts among a subset of
graph nodes.

◮ We plan to propose more efficient methods for predicting
missing contacts in large geographical spaces (e.g. MIT).

Kazem Jahanbakhsh, Valerie King, and Gholamali C. Shoja Predicting Missing Contacts 29/ 29


	Outline

