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Abstract—Experimentally measured contact traces, such as
those obtained in a conference setting by using short range
wireless sensors, are usually limited with respect to the practical
number of sensors that can be deployed as well as available
human volunteers. Moreover, most previous experiments in
this field are partial since not everyone participating in the
experiment is expected to carry a sensor device. Previously
collected contact traces have significantly contributed to devel-
opment of more realistic human mobility models. This in turn
has influenced proposed routing algorithms for Delay Tolerant
Networks where human contacts play a vital role in message
delivery. By exploiting time-spatial properties of contact graphs
as well as popularity and social information of mobile nodes,
we propose a novel method to reconstruct the missing parts of
contact graphs where only a subset of nodes are able to sense
human contacts.

Keywords-Mobile Social Networks; Contact Graph Recon-
struction; Geographical Proximity; Social Profiles; Popularity;

I. INTRODUCTION

The appearance of new wireless technologies have revo-
lutionized the way people communicate and share their con-
tents such as videos, photos, and messages. Delay Tolerant
Networks (DTNs) in which nodes can exchange information
only when they are in close proximity of each other have
opened a new and exciting avenue for communication in
the emerging social networks. In DTNs, the network is
sparse and disconnected most of the time. Thus, most of
known protocols for MANETs fail to operate in DTNs where
successful delivery of a message strongly relies on human
contact patterns.

The availability of contact traces such as [1], [2], [3] has
allowed researchers to identify the fundamental properties
of human mobility and to propose realistic mobility models
[4], [5]. By using these mobility models, researchers have
proposed efficient routing protocols for DTNs. In particular,
SimBet [6], Bubble Rap [7], and Social-Greedy [8] routing
algorithms are a few examples in which nodes exploit the
underlying properties of contact traces for optimal routing.
Therefore, the size and the reliability of contact traces are
at the core of the ongoing research in DTNs.

Previously, researchers have distributed a limited number
of short range wireless sensors among a set of people to

record when they are in close proximity of each other. More
specifically, whenever a person u who carries a sensor device
comes into the close proximity of another person v who
carries a wireless sensor or a Bluetooth enabled device,
person u’s sensor records a contact event with person v.
In this paper, we only focus on those experiments in which
wireless sensors are carried by a set of people to collect
their contact events. We can represent the set of events by
a directed graph called contact graph, where the nodes are
people and the edges are contact events. We call the nodes
which carry a sensor device internal nodes and those which
carry a Bluetooth enabled device such as cellphones or PDAs
external nodes. Justification for having two different types
of nodes will be shown in section V. Specifically, real data
which were collected in various settings show that people
with Bluetooth enabled devices (e.g. external nodes) by far
outnumbered those with wireless sensor ones.

In experimental datasets that we have analyzed (see Table
I,) we have found that internal nodes have recorded a quite
large number of contacts with external nodes. It is clear that
these contacts belong to those people who carry their own
cellphones or PDAs. While internal nodes can record the
presence of all other nodes including internal and external
ones, the external nodes are not able to detect any contact
event. As a result, a large portion of the sampled contact
graphs, specifically the contacts among all external nodes,
is missing. In this paper, we are interested in reconstructing
those partial contact graphs that are collected in a real
experiment. We formulate the problem of inferring the
missing part of a contact graph as a contact prediction
problem, and we propose several methods for predicting the
missing contacts. Our proposed methods predict the missing
contacts among external nodes by exploiting the underlying
properties of the contact graphs.

In this work, we study a variety of contact traces collected
from different social settings such as [1], [2], [3], [9] for our
analysis. Based on the observed time-spatial properties of
contact graphs we propose three different methods that make
their contact predictions by computing similarities between
neighbor sets of external nodes. We also investigate the
effectiveness of using nodes’ contact rates for predicting
missing contacts. Furthermore, it has been shown that the



contact probability between mobile wireless devices is in-
fluenced by their owners’ social characteristics [1], [10]. We
call the set of social characteristics for each user her social
profile. In this paper, we also present two socially-based
methods and study their performance for predicting missing
contacts by using a contact trace collected from a conference
setting [2].

Our results show that we can reliably reconstruct the
missing parts of contact graphs by using the proposed
methods which in turn enables researchers to expand the
existing collected contact traces in order to include the
contacts among external nodes as well. Our solution to the
contact prediction problem is very valuable because it also
sheds light on the way in which people move. While the
problem of link prediction is not new in the context of social
networks [11], [12], to the best of our knowledge our work is
the first one that tries to address this problem in the context
of mobile social networks, a network consisting of contacts
among a set of mobile users. The main contributions of this
paper can be summarized as follows:

1) We present the problem of contact prediction in the
context of mobile social networks and show how
we can study this problem by using real data from
different social settings.

2) We propose several methods each of which makes use
of one of time-spatial, popularity, or social information
to reconstruct the missing part of a contact graph.

3) Finally, we integrate social information with time-
spatial information to propose a more effective method
for contact prediction.

The remainder of the paper is organized as follow: Section
II reviews the recent work in the field. Section III defines the
problem to be tackled. Section IV describes the important
properties of contact graphs that can help us predict contacts
as well as proposed methods for contact prediction. The
performance results of our methods for different datasets
are presented in Section V. Finally, Section VI concludes
the paper.

II. RELATED WORK

Researchers have proposed several synthetic mobility
models based on underlying properties of contact graphs.
Musolesi et al. have proposed a community-based mobility
model (CMM) in which nodes tend to contact other nodes
from their own community with higher probability than
nodes from different communities [4]. They have used real
contact traces to validate the CMM. By analyzing human
contact and Wireless LAN traces, Hsu et al. have also
introduced the Time-variant Community Model for human
mobility [5].

The underlying properties of contact graphs also play a
vital role in the performance of routing algorithms for DTNs.
By using complex network analysis, researchers have found
patterns in contact graphs that are similar to those in social

graphs. Specifically, they have discovered communities and
heterogeneous centralities in contact graphs obtained from
contact traces. SimBet [6] and Bubble Rap [7] routing
algorithms have been proposed based on these observations.

In [8] we proposed a routing algorithm called Social-
Greedy that exploits the offline social profiles of people for
routing messages in DTNs. In Social-Greedy each mobile
node carrying a message forwards its message to those
encountered nodes that are socially closer to the messages’
destinations than itself. We have studied the performance
of Social-Greedy by using real data collected from a con-
ference. However, in this paper we are proposing a more
effective measure to compute the social similarity among
nodes. We then show the effectiveness of our new social
measure for predicting missing contacts in mobile social
networks.

Nowell and Kleinberg have addressed the link prediction
problem in a citation network to predict future collaborations
among scientists [11]. They have proposed several predictors
based on properties of social networks. Authors in [12]
have assessed the confidence of experimentally collected
interactions among proteins by using small-world properties
of protein networks. However, in this paper our goal is to
study the underlying properties of evolving contact graphs
to see if we can predict the contacts among external nodes
along with the time intervals when those contacts actually
happen.

III. PROBLEM DEFINITION

A contact event between two users u and v can be shown
by a quadruple (u, v, ts, te) implying that user u’s device
has detected user v’s device in its close proximity in the
[ts, te] time interval. We assume that every human contact
between u and v is recorded as a contact event by one of
the sensors carried by u or v. It is important to note that
not every observed contact between two devices necessarily
means a social interaction between people who carry the
devices. For the rest of paper, we only focus on analyzing
those contacts that are collected by wireless sensors in an
experiment.

We can show all contacts recorded by internal nodes
during an experiment using a directed contact graph G =
(V,Eknown). Here, we denote the set of all people par-
ticipating in the experiment with V = Vint ∪ Vext where
Vint and Vext are the sets of internal and external nodes,
respectively. We assume that |V | = N and |Vint| = N ′

where N ′ < N . We also denote the set of known edges by
Eknown where we translate every observed contact such as
(u, v, ts, te) by the internal node u to a directed edge that
connects node u to node v in G. From the data provided
by experiments such as those listed in Table I, we can only
construct a partial contact graph. In other words, while the
set of edges in Eknown ⊂ Vint× (Vint ∪Vext) is known, all
edges between external nodes are missing. Our problem is to
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Figure 1. Constructing the partial contact graph Gk

infer the missing edges among external nodes by using the
available information from known part of the graph (e.g.
Eknown). More specifically, our problem is to predict the
missing edges Eunknown ⊂ Vext × Vext that are exactly the
unobserved edges among external nodes.

IV. RECONSTRUCTING THE CONTACT GRAPH

In this section we describe the essential properties of
contact graphs that are useful for contact prediction. We
also propose three different sets of prediction methods based
on the underlying properties of contact graphs. Finally, we
explain our main algorithm that makes use of our proposed
methods to infer the missing contacts among external nodes.

A. Constructing Partial Contact Graphs
Since the collected contact traces change over time (e.g.

edges between nodes appear and disappear), we divide the
experiment time into equal intervals of τ seconds called time
intervals. We choose τ = c×T where c is a constant integer,
and T is the inquiry interval of wireless sensors that is the
time gap between two consecutive sensings. The coefficient c
should be chosen carefully according to the dataset setting.
Usually c is chosen to be either 1 or 2. Let Λk = [t0 +
kτ, t0 + (k + 1)τ ] denote the kth time interval where 0 ≤
k ≤ kmax and t0 is the starting time of the experiment (see
part (a) of Figure 1). For each time interval Λk, we construct
a contact graph Gk by collecting all contacts that have been
observed by internal nodes in Λk. We show the kth contact
graph with Gk = (V,Eknown

k ) where V = Vint∪Vext is the
set of all nodes and Eknown

k is the set of all known edges of
Gk (e.g. observed contacts by the internal nodes). In Figure
1, Gk contains all three contacts e3, e4, and e5 that are
observed by internal nodes in Λk. We construct all contact
graphs Gk’s for kmax steps. Our goal is to predict missing
edges Eunknown

k ’s by exploiting the information about the
known edges of Gk’s where Eknown

k ⊂ Vint× (Vint ∪Vext)
and Eunknown

k ⊂ Vext × Vext.

B. Contact Graph Properties
There are three elements that play essential roles in

contact process: (1) time-spatial locality, (2) social similarity,
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and (3) popularity. Next, we discuss the importance of these
elements in the structure of the contact graph.
Time-Spatial locality: A contact between two nodes u

and v at time t means that u and v have been in close
proximity of each other at time t. If node u records a contact
with node v at time t and node u also records a contact with
node w at time t+ δ, for a small δ we can say that nodes v
and w are in a close distance of each other around time t.
If two nodes are geographically close, we expect that they
are more likely to meet each other in the near future.
Social similarity: The other element that plays an im-

portant role in the structure of a contact graph is the
social dimension of nodes. Let simsoc(u, v) denote the
social similarity between two nodes u and v. We assume
that if node u is more socially similar to v than w (e.g.
simsoc(u,w) < simsoc(u, v)), then u is more likely to
contact v than w.
Popularity: Popularity in social networks are captured

by nodes’ degrees. Let us define a node’s contact rate as
the number of contacts a node has made in the last Wlen

seconds. A node’s contact rate in mobile social networks
is similar to a node’s degree in a social network, in that it
reflects the social role of the device’s owner. For example,
if node u’s owner is a conference organizer, it probably has
a high contact rate. Thus, if node u has a higher contact rate
than v, we can assume that node u has a higher probability
to contact a given node w than v does.

C. Methods Based on Neighborhood Similarity
To predict contacts, one approach is to exploit the underly-

ing properties of contact graphs. Here we want to show that
contact graphs have a neighborhood-cohesiveness property
in which neighbors of a given node have a high probability
of being connected to each other. First, we construct the
contact graph Gk’s for all time interval Λk’s as described
earlier. The clustering coefficient of node u in Gk is the
fraction of pairs of u’s neighbors that are connected to each
other by edges [13]. We can compute the average clustering
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coefficient of the contact graph Gk denoted with CCk, by
taking the average of clustering coefficients of all nodes
in Gk. In Figure 2, we have shown the average clustering
coefficients for the contact graphs during the second day of
Infocom 2006 where τ = 2× T = 4 minutes. Interestingly,
the total average of all computed CCk values is shown to
be around 25%.

To justify the neighborhood-cohesiveness property of con-
tact graphs, let us assume that we are running an experiment
with N ′ sensors when all of them have similar sensing
ranges of r. Moreover, suppose our nodes are uniformly
distributed in the experimental region (e.g. a conference
hotel). In this graph, there is an edge between two nodes
u and v in Λk if their distance is less than r in that time
interval (e.g. d(u, v) < r). Now, let us consider the simple
scenario shown in part (a) of Figure 3 where two nodes u and
v have detected a common neighbor w at the same time. The
existence of links (u,w) and (v, w) implies a geographical
proximity between u and v which in turn increases the
chance that u and v also sense each other. It is not hard
to see that number of common neighbors (NCN) between
two given nodes u and v is proportional to the intersection
area between their radial circles as shown in part (b) of
Figure 3. A large NCN for two given nodes implies a large
intersection area between their radial circles which in turn
indicates a geographical closeness between them.

Now, we discuss three methods that measure the geo-
graphical closeness between two nodes based on the in-
tersection between their neighbor sets. In all the following
equations, simk(u, v) denotes the similarity between two
nodes u and v in Λk, and Nk(u) represents the neighbour
set of node u which is the set of contacted nodes by u in
time interval Λk.

simk
ncn(u, v) =

∣∣Nk(u) ∩Nk(v)
∣∣ (1)

simk
jac(u, v) =

∣∣Nk(u) ∩Nk(v)
∣∣

|Nk(u) ∪Nk(v)|
(2)

simk
min(u, v) =

∣∣Nk(u) ∩Nk(v)
∣∣

min(|Nk(u)| , |Nk(v)|)
(3)

While Equation 1 simply calculates the NCN between a
pair of nodes to estimate their closeness, the Equations 2 and
3 are the normalized versions of the NCN method. Equation
2 (Jacard method) makes use of the Jacard index to measure
the similarity between the neighbor sets of the given nodes
[14]. To clarify the main difference between Equations 2 and
3 (Min method), let us consider two scenarios. In the first
scenario, let us assume that two nodes u and v contact two
similar nodes in time interval Λk. Also suppose node u has
only contacted these two nodes while node v has contacted
ten nodes including these two common nodes in Λk. We
might desire a higher significance for the described scenario
than if each of u and v had seen six nodes in Λk where
two of these six nodes are in common. Although the Jacard
index gives 1

5
for both scenarios, the Min method assigns a

higher score to the first scenario [12].

D. Methods Based on Social Similarity

Considering the importance of homophily principle in link
formation process in social networks [15], we want to test
the power of social similarity for predicting the contacts
among nodes in a mobile social network. In our previous
work, we have studied the influence of the similarity of
people’s social profiles on their contact probabilities in a
conference environment [8]. Eagle et al. [1] and Mitbaa [10]
have also found a close relation between human mobility and
their friendship networks. In this work, we have access to
brief social profiles of people who attended Infocom 2006
conference. In these social profiles, people have reported
their social characteristics. We can present each social char-
acteristic i (social dimension) for node u with a set Γi

u called
the social characteristic set of node u. For example, node
u’s research interests can be shown with a set of topics as
Γinterests
u = { 1, 2, 3} where 1, 2, 3 can represent DTN,

MANET, and Social Networking areas.
1) Social Similarity Based on Jacard Index: By employ-

ing the Jacard index, we can compute the similarity between
two nodes with respect to each social dimension as follow
[8]:

σi
jacard(u, v) =

∣∣Γi
u

⋂
Γi
v

∣∣
|Γi

u

⋃
Γi
v|
, (4)

where Γi
u is the social characteristic set of node u for

social dimension i, and
∣∣Γi

u

∣∣ is its cardinality. Assuming
that we have d different social dimensions for each node,
we can compute the total social similarity between two
nodes by calculating the total average over all d dimensions.
Therefore, we can obtain the total social similarity between
two nodes u and v as below:

simsoc
jac(u, v) =

d∑

i=1

σi
jacard(u, v)

d
, (5)



where d is the number of social dimensions. Note that for
Infocom 2006 data, the number of available dimensions are
6 as it will be shown later (d = 6).
2) Social Similarity Based on Foci Distance: Suppose

in a conference there are two people u and v who are
interested in the Routing research area. Moreover, assume
that these two people do not have any other similar social
characteristic (or social focus). More specifically, they have
different affiliations, were born in different countries, speak
in different languages and so on. Roughly speaking, there is
a high probability for these two people to meet each other
in the conference because both of them may attend the same
sessions. We also can see that their contact probability has
an inverse relationship with the number of people who are
interested in the Routing area. Thus, we can define the Foci
distance between two given nodes as the cardinality of the
smallest social focus that both of them share with each other.
In our previous example, the social distance between u and
v with respect to research interest is equal to the number of
conference participants who are also interested in Routing.
We can write the Foci distance between two given nodes u
and v as below [16]:

dfoc(u, v) = min |{F |u, v ∈ F}| , (6)

where F is the common social focus of u and v. Note that
there is a supergroup that contains all nodes of the network.
Considering Equation 6, we can define the Foci similarity
between two nodes as follow:

simsoc
foc(u, v) =

1

dfoc(u, v)
(7)

E. Method Based on Popularity

Motivated by the preferential attachment model for social
networks [17] in which a node u connects to another node
v with a probability that is proportional to v’s degree, we
can assume that the contact probability between two nodes
in a mobile social network depends on their individual
contact rates. Let λu denote the contact rate of node u that
is, the number of contacts in an interval. We assume that
the combined contact rate between two nodes u and v is
proportional to the product of their individual contact rates.
Thus, we define the popularity measure between two nodes
u and v in time interval Λk as below:

simk
pop(u, v) = λu.λv (8)

To compute node u’s contact rate we count the number
of u’s contacts in the last Wlen seconds. In Section V,
we employ all six Equations 1, 2, 3, 5, 7, and 8 as our
proposed prediction methods to reconstruct the missing parts
of contact graphs.

Table I
REAL DATA DESCRIPTION

Dataset Inf 05 Inf 06 MIT Camb Roller
Mobile nodes 41 79 97 36 62
Length 3 days 4 days 246 days 11 days 3 hours

Scanning period 120 sec 120 sec 300 sec 600 sec 15 sec
External no 206 4321 20698 11367 1050
Total contacts 227657 28216 285512 41587 132511
Ext. contacts 57056 5757 183135 30714 72365
Ext. contacts % 25% 20% 64% 74% 55%

F. Reconstruction Algorithm
The following steps describe our algorithm for recon-

structing the missing parts of Gk’s by selecting one of the
previously presented prediction methods:

1) First we generate partial contact graph Gk’s for all k
values as we have described in Section IV.

2) Next, we compute the similarity scores between all
pairs of external nodes by using one of our prediction
methods. These similarity scores basically estimate the
contact probabilities among external nodes. Therefore,
for each time interval Λk we obtain quadruples such as
(u, v, k, sim(u, v)) where u and v are external nodes,
sim(u, v) is the computed similarity score for nodes
u and v, and k is the time interval number. We store
all quadruples whose similarity scores are greater than
zero in a similarity list denoted by Lsim for the post-
processing step. We repeat the same process for all
intervals (0 ≤ k ≤ kmax) and store all the quadruples
in the same list.

3) When we finish with all intervals, we sort the Lsim

list in a descending order based on computed similarity
scores. The sorted version of the similarity list is our
predictor results.

4) To infer the missing contacts, we select the first Rank

number of predictions from the sorted list of Lsim.

V. PERFORMANCE EVALUATION

In this section we evaluate the performance of all pro-
posed methods in the previous section by using the available
datasets. Our ultimate goal is to see which method is more
effective for predicting the missing contacts.

A. Real Data Description
Here, we are planning to use contact traces collected from

four different social settings. Table I describes these datasets.
Info 05 and Info 06 datasets were collected from Infocom
conference in 2005 and 2006 respectively. Participants in
Info 05’s experiment belong to different social communities;
however, in the Infocom 2006 participants were especially
selected such that 34 people out of 79 were from four
research groups [18]. In Info 06 dataset, participants also
reported a brief version of their social profiles which con-
sisted of (1) nationality, (2) graduate school, (3) languages,
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(4) affiliations, (5) city & country of residence, and (6)
research interests [2]. In Cambridge dataset (Camb), the
wireless sensors were distributed mainly between two groups
of undergraduate students from University of Cambridge,
and some graduate students from a research lab [9]. Note
that both Infocom 06 and Cambridge datasets also include
data for stationary wireless sensors; however, in this paper
we only use the sampled contacts by mobile sensors. While
Rollernet dataset (Roller) contains the contacts from a set
of people who participated in a rollerblading tour in Paris
[3], Reality dataset (MIT) includes contact data of students
and staff at MIT for a period of 9 months [1].

As we can see from Table I, the number of external
nodes in all datasets are much larger than the number of
internal nodes. Moreover, the ratios of sampled contacts with
external nodes to total contacts are also significant. This
observation is our main motivation to propose a prediction
algorithm for reconstructing the missing parts of partially
sampled contact traces.

B. Testing Reconstruction Algorithm Using Real Data
Since the external nodes do not carry sensors, there is

no way to validate the inferred edges between them. To get
around this issue, we choose a random subset of the internal
nodes and label them as the surrogates of external nodes.
These surrogates are going to act as external nodes. We
remove all the recorded contacts between surrogates from
our Gk’s. This process is shown in Figure 4 where the
surrogates are shown as squares in the original graph Gk

before edge removal. To generate the partial graph G′

k, we
remove all contacts that have been recorded by surrogates,
but we still keep the contacts recorded by the remainder of
internal nodes (i.e. circle nodes in Figure 4). These partial
G′

k’s are the inputs for our reconstruction algorithm.
To validate an inferred contact, we examine the original

contact trace that includes all contacts among all internal
nodes to see if we can find a match. For example, for
an inferred contact such as (u, v, k, sim(u, v)), we search
through our complete dataset to see if there have been any
contacts between u and v in the [t0+kτ, t0+(k+1)τ ] time
interval. We are able to do this because the surrogates are
actually internal nodes and we have all their contact data.

Table II
THE PERCENTAGE OF MISSING PART OF CONTACT TRACES

Dataset Inf 05 Inf 06 MIT Camb Roller
Edge Loss % 52% 56% 61% 56% 55%

C. Contact Prediction Using Time-Spatial and Popularity
Information

To evaluate the performance of our prediction methods,
for all our datasets we randomly choose 75% of internal
nodes and label them as surrogates. We then construct the
partial contact graph G′

k’s as described earlier. The resulting
partial graphs include only a small subset of nodes. Table II
shows the average percentage of contacts that we discard by
labeling 75% of the internal nodes as surrogates. Our goal is
to infer the missing contacts between the surrogates of the
partial contact graph G′

k’s. Note that for Infocom 2005 and
2006 datasets, we use only the collected contacts on the first
day of the main conference; however, for the Cambridge and
Rollernet datasets we use all contacts for our analysis. We
also use 35 days of MIT data for our analysis. We repeatedly
run our prediction algorithm with 20 different random sets of
surrogates, and the presented results are the average values.

Let us first focus on the performance of methods that are
based on neighborhood similarity and popularity. To infer
the missing contacts, we pick the first Rank number of
predictions from our sorted Lsim list as the most confident
predictions. We then compute the percentage of matches (i.e.
true positives) between our prediction results and real data
by inspecting our database. We increase the Rank value
to see how different methods operate as we increase the
number of predictions. For comparison purposes, we use
as our baseline a simple random predictor that randomly
selects a pair of surrogates and a time slot as a prediction.
Figures 5, 6, 7, and 8 show the percentages of true positives
for Infocom 2006, Cambridge, Rollernet, and MIT datasets
respectively. We have not shown our results for Infocom
2005 because of the space limitation. However, Infocom
2005’s results are very similar to the presented results for
2006.

From the given figures, we make several interesting obser-
vations. First, NCN, Jacard, Min, and Popularity predictors
significantly outperform the random one, proving that there
is indeed useful information even in partial contact graphs
which can be used for prediction purposes. Second, it
is evident that in most of our evaluations, the methods
based on neighborhood similarity perform better than the
popularity method which again proves the importance of
using time-spatial locality for predicting the missing parts
of contact traces. The reader should note that the popularity
method does not contain any location information, unlike the
neighborhood similarity methods. Third, as we increase the
Rank value, the percentage of true positives drops, while
the percentage of false positives increases. This is because
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Figure 6. Percentage of true positives for contact predictions (Camb)

we sort our similarity list in a descending order.
Interestingly, in the Rollernet dataset we observe that

the effect of popularity drops more significantly than other
datasets as we increase our Rank. To justify this we should
recall the social structure of people who participated in
this experiment. One group consisting of 25 staff members
were asked to stay at previously assigned positions in front
and back of the tour. There was another group of friends
with 11 nodes as well as a group of skilled skaters with
26 nodes. We believe that most of these people except
skilled skaters were not very mobile and were located most
of the time in the same relative position inside the tour.
As a result, the performance of popularity method without
location information drops faster than that of a conference
setting in which people have a chance to meet each other at
least every two hours during coffee breaks.

Furthermore, results from the MIT dataset show that for
large geographical spaces (e.g. campus environments) the
percentage of true positives for contact predictions is low
because it is likely to have a subset of external nodes where
there are not any internal nodes in their proximity. Therefore,
the geographic based methods fail to predict the missing
contacts among such external nodes and different prediction
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Figure 7. Percentage of true positives for contact predictions (Roller)
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Figure 8. Percentage of true positives for contact predictions (MIT)

methods may have to be devised.
It is necessary to mention that most real contact traces are

quite noisy, and in particular they can miss many contacts.
Authors in [19] have listed several issues related to iMotes
software which were used in the Infocom, Cambridge, and
Rollernet experiments. The reset issue because of memory
overflow, the synchronization issue because of random seeds,
and the limitation for the number of responses returned
in a Bluetooth scanning caused by the Bluetooth protocol
stack are the most important ones. All of these issues can
cause iMotes to miss some of real contacts. Thus, the
number of computed false positives for our predictors may
be overestimated because some of those false positives could
have actually happened in the reality, but iMotes failed to
capture them.

D. Contact Prediction Using Offline Social Information
As we have mentioned earlier, Infocom 2006 data also

includes participants’ social profiles. In this part of our
analysis we assume that we do not know anything about
the contact trace except the social profiles of participants.
In other words, we assume that all internal nodes act as
surrogates of the external nodes. For testing our social
methods, we compute social similarities between all possible
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Figure 9. Percentage of true positives for contact predictions using social
data (Info 06)

pairs of surrogates (e.g. (u, v, sim(u, v)) by using Equations
5 and 7 independently. We store the computed Jacard and
Foci similarities in L

jac
sim and L

foc
sim lists, respectively. We

sort both of these similarity lists in descending order. These
two lists are our social predictor results for Jacard and Foci
similarities. To validate a prediction based on social simi-
larity such as (u, v, sim(u, v)), we randomly select a time
interval Λk as the time step when a contact has happened
between nodes u and v. For evaluation, we choose the first
Rank number of predictions from our sorted similarity lists
and inspect them by using Infocom 2006’s contact trace data.

Figure 9 shows the percentages of true positives regarding
our prediction results when we only use social profiles.
The figure shows that Foci similarity better reflects the
similarity among people who attend a conference than
Jacard does. From Figure 9, we can make the interesting
observation that using social data without any time and
proximity information can still be helpful for predicting
missing contacts. The reader should note that the collected
social profiles were only partial in that some people did
not report their complete profiles, or any at all. By testing
the distribution of social profiles, we have found that there
are only around 100 pairs of nodes which are socially very
similar (e.g. simsoc

foc >= 0.2) while the majority of nodes
are not. Therefore, we expect that for Rank values greater
than 7, social profiles lose their effect for prediction task.
For the rest of our analysis we only use the Focus method
to measure the social similarity between nodes.

We have already seen that NCN method outperforms
others as it contains the proximity information. Now, the
question is if we can propose a better predictor by using
both social profiles and NCN information. One could make
the case that once two users are in relative proximity (e.g. the
same room), the probability of meeting each other is high if
they are also friends. We need to characterize the effects of
social focus and NCN on contact probability. We therefore
select 75% of internal nodes as surrogates and repeat our
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Figure 10. Contact probability as a function of social and proximity
information (Info 06)

evaluations as before by computing NCN scores between
surrogates. We filter those quadruples that exactly have c

number of nodes in common (e.g. simk
ncn(., .) = c) and

store all of them in Lc
sim list. Next, we use data binning

to categorize all Lc
sim’s quadruples into five equally sized

intervals based on Foci similarity. We choose our intervals
as thrsoc ≤ simsoc

foc(u, v) ≤ thrsoc + 0.1 where thrsoc ∈
{0.0, 0.1, 0.2, 0.3, 0.4}. We then compute the percentage of
surrogates that have actually met each other. This gives us
the contact probabilities for different social similarity and
NCN values. We need to repeat the same process for all
possible NCN values (e.g. 1 ≤ c ≤ 5).

Figure 10 shows the contact probability among surrogates
as a function of NCN and Foci similarity. We can observe
that for NCN values of 1, 2 and 3, as Foci similarity
between two given nodes increases, the contact probability
also becomes greater. Figure 10 also shows that we cannot
expect any improvement by adding social information when
NCN is large. This is because for these cases the NCN acts
as a dominant factor in contact probability. Our results are
very encouraging as they provide incentive to incorporate
social information with the NCN method to achieve a better
performance.

One possible way for combining social information with
NCN would be to compute prediction quadruples by using
the NCN method. We then sort all quadruples in a descend-
ing order based on their NCN scores. Next, we use the
social Foci similarity as the second dimension to rank all
quadruples with the same NCN scores in a descending order.
This second ranking would give a higher weight to those
pairs that are socially closer. This two-fold sorting would
provide better performance than when we use only one of
NCN or Foci similarity. Incorporating nodes’ contact rates
with NCN information with a similar approach would also
enhance the performance of the NCN predictor. We have
plan to pursue this direction as future work.



VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the problem of contact
prediction in the context of mobile social networks. We have
described different methods for predicting missing contacts.
We have examined our methods by using real contact traces
collected from different social settings. Our results show that
time-spatial based scores provide the most reliable results
for predicting missing contacts among external nodes. We
have also studied the power of social profiles to predict
human mobility. We have shown that combining social
information with time-spatial information can provide better
performance results than using each of them independently.
We believe that our contributions have significant practical
values because they allow researchers to study properties
of large scale contact graphs by sampling only a portion
of the original graphs. Our results are also important for
mobility modeling since they explain how people move
in different social settings such as conference and campus
environments. For our future work, we plan to propose more
efficient methods for predicting missing contacts in large
geographical spaces as in MIT dataset.
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