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Abstract—Predicting human mobility is considered as a chal-
lenging problem. In this paper, we formulate the problem of
human contact prediction as a graph inference problem. We show
the importance of using offline social information for predicting
people’s contacts motivated by homophily theory. We also prove
that by using the small-world network properties of the contact
graphs, we can reconstruct the missing part of a contact graph
where only part of the graph is known. Our results are promising
because they allow researchers to reconstruct the missing parts
in experimentally measured human mobility traces when only
partial traces are obtainable.

I. INTRODUCTION

Predicting human mobility is complex because there are
many parameters which influence the way that people move.
These parameters can range from social factors such as peo-
ple’s occupations to the structure of the environment in which
people move. Understanding the properties of human mobility
has several applications in different areas. For example, it can
be used to find the most efficient locations for GSM antennas.
It can also be used for traffic planning in cities and public
health studies of epidemic disease. Researchers have studied
different aspects of human behavior such as the way they
become friends, call each others by their phones, or collab-
orate together for publishing papers. They have found small-
world network properties in most of these human-embedded
networks [1].

Everybody in a society can be identified by a set of social
characteristics such as occupation, affiliation, place of living,
and so on. We call a person’s set of social characteristics
as her social profile. The homophily phenomenon in which
similar people are more likely to interact with each others has
been studied in social networks [2]. Similarly, we believe that
people are more likely to interact with those who are socially
similar to them. In our previous work, we have studied the
effect of social characteristics on the people’s mobility pattern
in a conference setting [3].

In this paper, we focus on predicting human mobility in a
conference environment. We say two people are in contact
if they are in each other’s proximity. For the first part of
the paper, motivated by homophily theory we investigate the
importance of social similarity on people’s mobility patterns.
We try to infer people’s contacts by computing the similarities
between their social profiles. In this part we assume that we

only have information about people’s social profiles while
people’s contacts are completely unknown. For the second part
of the paper, we study a similar problem in a different setting
where we try to infer the missing contacts among people when
only part of the contact graph, which is the graph constructed
by nodes mobility, is known. Inferring the missing part of a
contact graph is important because it allows researchers to
reconstruct the unobserved part of their graphs when there
is a partial observation for people’s contacts. To best of our
knowledge, our work is the first one which addresses the
problem of contact prediction in a mobile social network by
using social theories. Our main contributions are:

• We show the importance of social profiles as well as
the underlying structure of contact graphs in contact
prediction problem.

• We also present several methods to reconstruct a contact
graph when we only have information about people’s
social profiles or when only a partial part of the contact
graph is known.

The remainder of the paper is organized as follow: Section
II reviews the related work. Section III defines the problem
to be tackled. Section IV describes the importance of social
information on the structure of contact graphs. Section V
explores the importance of using the underlying structure of
contact graphs for contact prediction problem. Section VI
discusses a model for contact graphs. Finally, Section VII
concludes the paper.

II. RELATED WORK

Eagle et al. [4] and Mitbaa et al. [5] have found a close
relation between people’s mobility patterns and their friend-
ship network. More specifically, they have shown that people
are more likely to meet their friends than strangers. Authors
in [6] and [7] have also studied the properties of contact
graphs. They have computed the centrality of nodes as well
as their similarities by using the contact information. They
have shown the effectiveness of using the small-world network
properties of contact graphs for routing messages in mobile
social networks. By analyzing human mobility traces, authors
of [8] have analyzed the distribution of inter-contact time, that
is the time gap separating two contacts between the same pair
of people.
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Nowell and Kleinberg have studied the problem of link
prediction in citation networks [9]. They have applied different
methods borrowed from graph theory to find the distances
between authors with respect to the underlying graph structure.
Their goal was to infer the future collaborations between
scientists by studying the underlying properties of the cita-
tion graph. Goldberg et al. have assessed the confidence of
experimentally observed interactions among proteins by using
cohesive neighborhoods and small average distance between
proteins [10]. Authors of [11] have also studied the graph
inference problem in metabolic networks where part of the
graph is known by employing a supervised learning algorithm.

III. PROBLEM DEFINITION

In this paper, our main problem is graph inference when
a prior knowledge about the graph is available. In the first
part of the paper, for a graph G = (V, E) we assume that
we have offline information (e.g. social information) about
vertices v ∈ V while the edges in E ⊂ V × V are totally
unknown. Thus, the problem becomes inferring edges in E

by using the available side information about vertices in V .
In the second part of the paper, we assume that for a graph
G = (V,E) our vertices set is V = Vint∪Vext where Vint and
Vext denote the internal and external vertices respectively. We
also assume that all edges in Eknown ⊂ Vint × (Vint ∪ Vext)
are known whereas all edges in Eunknown ⊂ Vext × Vext

are missing (E = Eknown ∪ Eunknown). For such a partial
graph, our problem becomes to infer the edges among external
vertices (edges in Eunknown).

IV. GRAPH INFERENCE BY USING SOCIAL INFORMATION

To model the social interactions between people in a confer-
ence we can use a weighted contact graph G = (V,E) where
V is the set of people who attend in the social meeting and E

is the set of edges between them. There is an edge e = (u, v)
in G between u and v if they have contacted each other at least
once. In the contact graph G, we assign a weight to each edge
which shows either the total number of times that u and v have
seen each other or the total time period that they have spent
together during the social event. This weight can represent the
strength of social relation between the corresponding nodes.
We also assume that contact graph G is undirected because
the social interaction involves both sides. For the first part of
our analysis, we assume that the set of edges E is unknown
while there is social information about nodes in V .

A. Real Data Description
In this paper, we use the human mobility traces col-

lected from two different conferences [12]. The first dataset
is collected during the Infocom 2005 conference where 41
participants attended. The second dataset contains mobility
traces of 79 researchers attending in Infocom 2006 conference.
Both experiments lasted for three days. In these experiments,
contacts between participants were recorded by using iMote
sensors. These Bluetooth sensors sampled a contact between
two people when they were in close proximity of each other

(e.g. < 10 meters). For Infocom 2005 data, there is not any so-
cial information about participants. However, in Infocom 2006,
social profiles of people who participated in the experiment
were collected. These social profiles include information about
participants’ (1) nationalities, (2) spoken languages, (3) current
affiliations, (4) city and country of residence, (5) school, and
(6) research interests. Unfortunately these social profiles are
not complete since some people did not give their social
profiles. However, we have a brief description of social profiles
for 63 people. In this section, we limit our analysis only to
these subset of nodes.

As mentioned in the related work, people who are socially
close are more likely to be friends. The hypothesis that we
want to test can be stated as below:

Hypothesis: (Social proximity) Individuals who have
similar social profiles are more likely to contact each
other than those who do not have similar social
profiles.

To test this hypothesis, we should first define the social
similarity between nodes.

B. Jacard Social Similarity
Probably the most direct way to compute the similarity

between social profiles of two people is to use the Jacard
index [13]. As mentioned earlier, our social profiles contain
information about 6 different social dimensions. We can de-
note each social dimension of every node as a set of features.
For example, suppose node u speaks English and Spanish
while node v speaks English and French. Let us denote
English, Spanish, and French languages with numbers 1, 2,
and 3 respectively. We can show the spoken languages of
nodes u and v with two sets Γ2

u = {1, 2} and Γ2

v = {1, 3}
independently. By using Jacard index, we can compute the
similarity between two nodes in each dimension as follow [3]:

σi
jacard(u, v) =

∣∣Γi
u

⋂
Γi

v

∣∣
|Γi

u

⋃
Γi

v|
(1)

, where Γi
u is the feature set of node u for social dimension i

and
∣∣Γi

u

∣∣ is its cardinality. Considering the 6 different social
dimensions, we can compute the total similarity between two
nodes by calculating the average over all 6 dimensions as
below:

simjac(u, v) =

d∑

i=1

σi
jacard(u, v)

d
(2)

, where simjac(u, v) is the total social similarity between two
nodes u and v by using the Jacard index and d is the number
of social dimensions (e.g. for Infocom 2006 data: d = 6).

C. Social Foci Distance
We can also think about each dimension of social profiles as

a social focus. Sharing any social focus between two nodes u
and v can increase the likelihood that they contact each other
in the conference. Adapting the focus distance proposed by
Kleinberg to our work, we can define another social distance
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Fig. 1. Nodes Belonging to Multiple Foci

TABLE I
CORRELATIONS

ρnc,jac ρcd,jac ρnc,foc ρcd,foc

0.10 0.30 0.17 0.32

between two nodes u and v as the size of the smallest social
focus that includes both of them [14]. We call this new distance
as the social foci distance which is denoted by df (., .):

dfoc(u, v) = min |{F |u, v ∈ F}| (3)

, where F is the focus set to which both u and v belong. Note
that there is a super group which contains all nodes. Using the
foci distance, we can formulate the foci similarity between two
nodes u and v by Equation 4:

simfoc(u, v) =
1

dfoc(u, v)
(4)

According to Equation 4, the social similarity between
two nodes has an inverse relation with their foci distance.
To highlight the main difference between social foci and
Jacard similarities, we have shown a set of 8 nodes in Figure
1. Suppose all of these 8 nodes have the same affiliation,
nationality, school, language, and city. Furthermore, suppose
all nodes share the same research interests except 1 and 2
which have a similar set of interests that is different from the
rest of nodes (nodes 3 to 8). By using the Jacard index, we
can show that simjac(1, 2) = 1.0 and simjac(1, 3) = 0.83.
Thus, based on the Jacard index node 1 is almost at the same
distance from both nodes 2 and 3. However, the foci distance
gives us simfoc(1, 2) = 0.5 and simfoc = 0.125. As we can
see the foci distance shows a closer distance between (1, 2)
than (1, 3) because both nodes 1 and 2 share the same interests.
Therefore, the foci distance can separate those nodes which are
socially close from other nodes more significantly.

D. Max Social Similarity
Watts et al. have used a set of social characteristics to

identify nodes in a social network [15]. They have defined the
social distance between two nodes as the minimum distance
over all dimensions. Combining their social distance with
Equation 1, we can introduce a new social similarity as below:

simmax(u, v) = max
i

σi
jacard(u, v) (5)

Here, we assume all dimensions have the same weights, and
if two nodes are similar in any dimension, they are assumed to

be socially close to each other. As the first step, we calculate
the Pearson correlation coefficient between social similarity
of all pairs of nodes and their total number of contacts, and
total contact durations for Infocom 2006. Let nc, cd, jac,
and foc variables denote the number of contacts, contact
duration, jacard similarity, and foci similarity respectively. We
can compute the correlation coefficients between each possible
pair of these variables as shown in Table I. The obtained
correlation coefficients show a positive dependency between
the contact pattern for a pair of nodes and their social similarity
which in turn supports our hypothesis.

E. Prediction Based on Social Similarity
As we have seen in the previous section, there is a depen-

dency between the pattern of interactions among nodes and
their social similarities. We can interpret the total number of
contacts or the total contact duration between two nodes as
their level of interaction. To construct the contact graph G,
we add an edge between two nodes if they have seen each
other at least once. We assign to each edge a weight which
shows the total contact duration in the conference. People can
randomly contact each other during the conference; therefore,
if we include all contacts in the contact graph, we will have
almost a complete graph as shown in Figure 2.

In this section, we assume that for the graph G = (V,E)
the edge set E is unknown; however, we have the information
about social profiles of nodes in V . By having social profiles,
we can calculate the social similarities between all possible
pairs in V by applying the three described social similarities.
We can store the similarity results in separate lists called Lsim.
Next, we sort each similarity list in a decreasing order. These
sorted lists are our predictor results which is going to be used
to infer the edges in E.

For inferring missing links, we extract from the original
Lsim those pairs which are similar at least as much as
a prespecified threshold thrsim. We store these pairs in a
separate list called L

temp
sim . Let us assume that there are lsim

pairs in the L
temp
sim . Meanwhile, we store all observed edges

in G according to our real data in another list called Lobs.
We similarly sort Lobs list in a decreasing order based on
the total contact duration for each pair. We extract the first
lsim pairs from Lobs and store them in a separate list called
L

temp
obs . Finally, we count the number of matched pairs between

L
temp
sim and L

temp
obs lists. This number shows the percentage

of correct predictions for thrsim. Our intuition is that larger
values of thrsim should predict the strong social interactions
more significantly than a random predictor.

To evaluate the performance of our predictor, we use
different threshold values for similarities. For each thrsim,
we compute the percentage of correct predictions versus the
fraction of all node pairs such as (u, v) for which we have
sim(u, v) >= thrsim. Figure 3 shows the results of our three
social similarities. As we can see in Figure 3, the performances
of three social similarities are statistically more significant than
random predictor. Note that a random predictor guesses the
missing links completely at random. Figure 3 also shows that
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(a) Infocom 2005 (b) Infocom 2006

Fig. 2. Contact graphs with different threshold values
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for large values of thrsim, the percentage of match between
our predictors and the observed edge set is higher than a
random predictor. These results clearly support our social
proximity hypothesis. Looking more closely at Figure 3, we
can see that the focus distance performs better than the Jacard
and MAX especially for large values of thrsim. Note that
in Figure 3, as we decrease the similarity threshold (using
a larger percentage of the population), the effect of social
profiles diminishes and our results become more similar to
random predictor. This is because there are only a few number
of pairs which are very close to each other. For instance, the
total number of pairs which are at least 10% similar is less
than 20% of all possible pairs.

For our three proposed social similarities, we have assumed
that all social dimensions have similar weights. However, this
assumption may not hold in the real world. In a conference
setting, for a given pair of nodes having the same affiliation
or sharing similar interests may have higher weight on the
social similarity than sharing the same country of residence.
Having human mobility data for a set of people with a detailed
version of their social profiles will allow us to study the effect
of different social dimensions on human mobility patterns. We
have plan to pursue this task as the future work.

V. GRAPH INFERENCE BY USING CONTACT GRAPH
PROPERTIES

In the previous section we have shown that nodes do
not meet each others uniformly at random whereas there is
tendency for nodes to contact those ones which are socially
similar to them. In this section we want to answer our second
question. For a contact graph G = (V, E), we randomly assign

labels to vertices either as internal or external nodes. We
also assume that we only have information about edges in
Eknown ⊂ Vint × (Vint ∪ Vext). This means that all edges
among external nodes are unknown. Our task is to infer
the edges among external nodes by using the known part
of the graph G. Moreover, we assume that there is not any
information about social profiles of nodes.

We can formulate this problem as a graph inference problem
where only part of the contact graph is known. Our main
intuition is to use the underlying properties of the contact
graph to infer the missing edges among external nodes. We
assume that for each edge in Eknown we know the total time
period that the end nodes have spent together as well as the
total number of times that they have contacted each other
during the conference.

A. Number of Common Neighbors (NCN)
We can assume that our contact graph G supports the triadic

closure property which is common in social networks [1]. For
instance, if node u meets node v and w often, then v and w

are more likely to contact each other too. Based on this fact,
we count the number of common neighbors (NCN) between
external nodes to compute their similarity [9]. Our intuition
is that if two nodes have a large NCN, they will be more
likely to interact together. Note that since we do not know the
edges among external nodes, they can only have neighbors in
Vint. We generate a list for all possible pairs of external nodes
with the number of common neighbors for each pair. Finally,
we sort the NCN list called LNCN in a decreasing order. This
sorted list is the output of NCN predictor for inferring missing
edges.

B. Shortest Path (SP)
It is known that social networks have low diameters [1].

By using the inverse of total time that two nodes have spent
together, we can assign a weight to each known edge in
Eknown. Thus, the smaller value for an edge weight means that
the corresponding end nodes met each other frequently during
the conference. For finding the similarity among external
nodes, we compute the total weight of the edges in the shortest
paths among them. This gives us a list of external nodes pairs
with the total weight of the shortest path between them. Let
us denote this list with LSP . We sort this list in an increasing
order. The LSP list can be used for inferring the missing edges.

C. Random Walk (RW)
Motivated by Page Rank algorithm used for finding the

importance of web pages [16], we can propose another method
which explores a larger subset of paths between two nodes.
Let us assume that we want to find the similarity between two
external nodes u and v. We can consider a random walk which
starts from u and moves to a neighbor of the current node with
probability of α at each step. The random walk returns to the
starting node u with probability of 1 − α. This guarantees
that we do not explore those parts of the graph which are far
from u and v. At each step, we choose a random neighbor
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Fig. 4. Performance of contact graph structure (Infocom05)

with a probability which is proportional to the weight of the
corresponding edge. For this method, we use the total contact
duration which two node have spent together as the weight of
the edge between them. Thus, at each step, the random walk is
more likely to move to a node which is similar to the current
node. To find the similarity between u and v, we compute
the stationary probability of v for the described random walk.
Finally, we can generate a sorted list of external nodes by
using the computed stationary probabilities (in a decreasing
order). Let us denote this sorted list with LRW .

We simulate a partial graph by randomly choosing a subset
of nodes as external ones and remove the edges among them.
In our simulation, we randomly pick 50% of nodes as external
nodes and remove all edges among them. We use both Infocom
2005 and 2006 data for our simulations. To evaluate the
performance of our predictors, we follow the same steps as
in Section IV. By using different percentage of the whole
population, we compute the percentage of matches between
the lists generated by the three described methods with the
sorted version of observed edges among external nodes. Note
that we sort the list of observed edges among external nodes
based on their total contact duration time.

Figures 4 and 5 compare the performances of NCN, SP, and
RW with a random predictor. Our results show that both SP
and RW predict the missing edges statistically better than a
random predictor. As we can see, the SP predictor outperforms
others and the RW predictor has the second rank. These results
show the importance of using the contact graph structure for
inferring the missing links. This also proves that there is an
underlying mechanism governing the formation of links in a
contact graph that clearly cannot be explained by a purely
random process. Figure 4 also shows that NCN does not work
efficiently for Infocom 2005 data. To explain this, we have to
consider the fact that our dataset for Infocom 2005 contains a
small subset of nodes where most of nodes have almost similar
degrees even before we remove edges among external nodes.
Thus, using number of common neighbors cannot provide
useful information for inferring missing edges.
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Fig. 5. Performance of contact graph structure (Infocom06)
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Fig. 6. Performance of contact graph structure (synthetic mobility with
q = 1.0)

VI. CONTACT GRAPH MODEL

In the previous sections, we have seen that the contact
graphs have a structure which is clearly different from a
random contact graph. Looking more closely at Figures 3, 4,
and 5, we can recognize a local maximum in the beginning
of the graphs. In this region where chosen nodes are very
similar, we can see that the maximum difference between our
predictors and the random predictor happens. In [1], Watts
and Strogatz have proposed a graph structure to model small-
world networks. Their graph models have properties of both
random graphs and structured graphs (e.g. a lattice). We can
use the same idea to model the structure of a contact graph.
Let us assume that our network has N nodes. We can generate
a social graph for these N nodes by following the same model
as Watts where we place N nodes on a one-dimensional lattice.
We connect every node to its k nearest neighbors with respect
to the lattice structure. Let us call these links short range links.
Then, we rewire each short range link with a probability p to
add random graph properties to our social graph. We call these
links long range links. Both short and long range links can be
considered as those nodes which are similar to each other. The
resulting social graph can be used as the underlying structure
by which we generate our contacts.

To generate contacts, we randomly pick a node u from all N
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q = 0.2, p = 0.2, and k = 5)

possible nodes in our generated social graph. Next, we choose
the node v which is going to meet u with a probability q

uniformly at random from all N nodes. This models the fact
that nodes may contact each other at random. With probability
of 1 − q, we choose the peer node for u from its neighbor
set in the social graph structure. This models the fact that
similar nodes are more likely to see each other. Following
these steps, we can generate a contact graph by having k,
p, and q parameters. Intuitively speaking, larger values for q

makes the resulting contact graph to be similar to a random
graph whereas small values for q appreciate the homophily
process in the generated contact graph.

For simulating a contact graph, we assume that our network
has N = 100 nodes. For the first run, we simulate a contact
graph with q = 1.0 in which nodes contact each other
uniformly at random. We pick 50% of nodes as the external
nodes. Figure 6 shows the results of NCN, SP, RW predictors.
As we can see, none of predictors performs better than a
random predictor because there is not any structure in the
simulated contact graph. For our second test, we choose k = 5,
p = 0.2, and q = 0.2 to simulate another contact graph.
The results of our three predictors are shown in Figure 7.
Interestingly, in this case we can see similar patterns for SP
and RW predictors as the ones which we have observed in the
real data. Thus, if nodes are more likely to see the ones which
are similar to them (e.g. their neighbors on the underlying
social graph), we can explain the observed local maximums
which appears in the beginning of our predictors graphs.

VII. CONCLUSION

In this paper, we have formulated the problem of social
contact prediction as a graph inference problem. First, we have
shown that we can predict the edges of a contact graph when
we only have social profiles of people, but we do not have
any information about the contact graph. Next, we studied the
effectiveness of using the underlying properties of the contact
graphs for contact prediction problem where only a part of
the contact graph is known. In both settings, our prediction
results are statistically more accurate than a random predictor.
All of the proposed contact predictors are based on well

known properties of social graphs. Finally, motivated by small-
world networks model, we have shown that the performance
of our predictors can be justified by considering the role that
homophily process plays on the structures of contact graphs.

One interesting direction for future work is to study the
performance of contact prediction by using a weighted version
of social similarity which assigns different weights to distinct
social dimensions. We also have plan to revalidate the results
of our predictors by using other available human mobility
datasets for other settings.
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