
 1

An efficient Parallel Implementation of Self Initialization Quadratic
Sieve for Integer Factorizations Using

Message Passing Interface (MPI)

Abstract: Integer factorization is one of the most
important topics in the complex computation
domain. With the advent of public key cryptosystems
it is also of practical importance. One method used
to factor large composite numbers is the Multiple
Polynomial Quadratic Sieve. This paper proposes
an optimized serial implementation of one of the
best variants of the Multiple Polynomial Quadratic
Sieve and then presents an efficient parallel version
of this serial implementation using the Message
Passing Interface (MPI). We also discuss the
performance of this implementation.

Keywords: Integer factorization, RSA
Cryptosystem, Self Initializating Quadratic Sieve
algorithm, Cluster, Message Passing Interface.

1 Introduction
The security of modern cryptosystems such as
Rivest-Shamir-Adelman (RSA) depends on the
difficulty of factoring the public keys. The Multiple
Polynomial Quadratic Sieve (MPQS) algorithm is
currently the fastest algorithm capable of factoring
integers around 100 digits in size, and is the second
fastest for integers (and RSA public keys) larger
than this.
The complexity of MPQS depends mainly on the
size of N , the number to be factored. Under
plausible assumptions the MPQS algorithm has an
expected run time of ()()NNcO lnlnlnexp [1],
where c is a constant (depending on the details of
the algorithm. For MPQS, 1≈c . For RSA moduli
the public key N is of the form qpN ×= where
p and q equivalent size prime numbers. For this

reason the MPQS factorization algorithm is very
well suited for testing the security of RSA
cryptosystem. In this paper we are interested,
particularly, in the parallelization of some variants
of MPQS using MPI on a cluster of workstations.

Therefore in the first phase we implement an
optimized serial version and then in the second
phase we focus on the parallel implementation of
the serial algorithm and try to improve the
parallelized solution as much as possible.
Benchmarks of the implementation are presented in
the conclusion.

2 The Self Initializing Quadratic Sieve
algorithm
2.1 Overview
This section briefly describes the Self Initializing
Quadratic Sieve (SIQS) algorithm. Details regarding
this algorithm can be found in [2]. The basic idea is
to find a random relation in the form of equation (1).

NYX mod22 ≡ (1)
If NYX mod±≡ , then the greatest common
divisor (gcd) of YX − and N will be a proper
factor of N with high probability. To find YX , that
satisfy equation (1), we first find several relations in
the form

Nvu ii mod2 ≡ (2)

In equation (2), iv factors into small primes (called

the factor base) and ii vu ≠2 . Such relations will be
called smooth.
When enough relations were generated, then one
can use some collection of the smooth relations to
construct a relation of the form (1). Finding which
collection of relations to use is a linear algebra
problem. In QS algorithm the numbers iv are the
values of one polynomial with integer coefficient as
below
() Nbxxg −+= 2)((3)

In above polynomial, b is chosen to be ⎡ ⎤N . This
makes it easy to factorize the iv by sieving. For

Kazem Jahanbakhsh
Sharif University

jahanbakhsh@mehr.sharif.edu

Jason Papadopoulos
University of Maryland College Park

jasonp@boo.net

 2

details of the process, we refer to the some
references [2, 3].
The problem with using only one polynomial is that
the values of)(xg increase in size as x gets
bigger. Thus as the algorithm progresses, smooth
relations becomes less frequent. To escape this
problem, we want to be able to change to a new
polynomial when the residues of the current
polynomial become too big.
We can attain an improvement in speed by replacing
the single polynomial)(xg in basic QS with a
succession of different polynomials. This variation
is known as the MPQS algorithm. MPQS sieves
polynomials of the form

() NbabxxaNbaxxg ba −++=−+= 2222
, 2)((4)

where ba, are integers and the sieve values x range
over a fixed interval. However the polynomial
switching cost in MPQS is expensive. To overcome
this unwanted cost, Pomerance introduced the SIQS
method, which involves a fast way to change
polynomials. Making the polynomial switching
cheaper allows smaller sieve intervals, which
increases the probability that sieve values will be
smooth. The following sections paraphrase
Contini’s description [2].

2.2 Initialization stage for all polynomials
SIQS algorithm uses an intelligent mechanism for
polynomials initialization at once. For this we find
primes sqq ,...,1 in the factor base whose product is

M
N2≈ . This value allows the minimum and

maximum values of ga,b(x) to have equal magnitude.
Let ∏=

=
s

l lqa
1

. For this ''a value, there are 12 −s

different ''b values and hence 12 −s independent
polynomial with equation (4).
When the sieving with polynomial i finishes, we
can initialize polynomial 1+i where

121 1 −≤≤ −si . In fact the ''b coefficient of
polynomial i + 1 can be calculated incrementally
from the ''b coefficient of polynomial i. Also the
roots of every prime p in the factor base (that does
not divide a) for polynomial i + 1 (i

proot) can be
computed from the previous roots of polynomial i.
The idea of generation different ''a coefficients can
be used for parallelizing the factorization process.

2.3 Sieve stage
The most time consuming part of SIQS algorithm is
sieving stage where we update a very large sieve
array of length 12 +M in unpredictable manner.
For each odd prime p in the factor base, we update
the locations with index of ipp +root for all
integers i that falls into sieve interval. Notice that
the sieving is a very cheap operation in comparison
with trial division [3].

2.4 Serial optimization approach
The critical part of SIQS that is sieving is
represented schematically in Figure 1.

/* Routine for conventional sieving. This is a sophisticated way
of computing the following: */
for (each prime in factor base) {
 for (each of the 2 roots for that prime) {
 start_offset = root;
 while (start_offset < sieve_size) {
 sieve_array[start_offset] -=
 log2(prime);
 start_offset += prime;
 }
 }
}

Figure 1: Conventional sieving pseudo code

As you can see from above pseudo code the sieving
step requires an enormous number of memory
updates; however, the updates usually cause cache
misses. A data layout rearrangement technique is
the most practical way to improve cache locality. To
utilize this technique we use cache blocking
mechanism to fit the working set in cache for the
duration of the sieving [4]. We also use a hashtable-
based method for processing most of the factor base
primes [5].
We added large prime variation support to SIQS
algorithm. With this variation we could achieve a
speed-up of approximately a factor 2.5 or more [8].
The linear algebra stage uses the “Block Lanczos”
method to iteratively solve the resulting linear
system [6].

3 Parallel Algorithm
From profiling data we conclude that the sieving
phase is the major portion of the SIQS algorithm.
From Amdahl’s law any parallelization efforts must
be focused on this phase to increase efficiency.
The implementation was based on a SPMD (Simple
Program Multiple Data) approach and on the
following procedures:

 3

1- In the partitioning phase of parallel algorithm
design, our focus is on defining a large number
of small tasks in order to yield what is termed a
“fine-grained” decomposition of a problem.
We use the domain decomposition approach to
problem partitioning. When factoring a large
input, the number of polynomials)(, xg ba to
be sieved is very large. Therefore we can
assume every polynomial is an independent
task.

2- The tasks generated by a partition are intended
to execute concurrently but cannot, in general,
execute independently. The computation to be
performed in one task will typically require
data associated with another task. Data must
then be transferred between tasks so as to allow
computation to proceed. In the partitioning
phase different tasks require data transferred to
each other to achieve concurrency. These
parameters are the number N to be factored,
the sieve length and other startup data in
addition to some other parameters for
determination of polynomial coefficients. In
the final phase after every node performed its
assigned sieving job with its polynomials the
saved relations must be collected for the
Master node to complete the factorization
process.

3- The agglomeration and mapping phase tend to
become a single phase in SPMD
implementation (as the mapping becomes
implicit to agglomeration). In this phase the
goal is to agglomerate small tasks to reduce the
communication costs by increasing locality.
Also we specify where each task is to execute.
For these reasons it is better to start every
node’s task with a separate ''a coefficient,
then generate the related polynomials for this

''a and do the sieving completely independent
of other nodes. So by using this new proposed
technique we can reduce the communication
costs and increase the efficiency of the
presented parallel algorithm significantly.

3.1 Domain Decomposition technique with '' a
coefficients
At the beginning, all we know from the SIQS
algorithm is the target value for ''a coefficient
(target_a M

2N=) to which the product of all

factors must multiply. All of the factors chosen
should be about the same size, but we don't know
how many should be chosen and no duplication with
future polynomials is allowed. Obviously, if we
choose an identical set of factors later we'll get
duplicate relations. Less obviously, if we choose a
set of factors later that is identical except for one or
two primes, we will also probably get duplicate
relations. Finally, the closer the product of the
factors is to ’target_a’, the higher the yield of the
resulting polynomials. Finally, ''a values should
have at least 3 factors; this will allow the ''a value
to generate at least)13(2 − ''b values, and is more
efficient. These turn out to be stringent constraints.
In addition, in our cluster that we have several
machines sieving, each machine has to be able to
build its own ''a values by itself, without having to
communicate its choices to the other machines. The
polynomial initialization routine begins the process
by figuring out how many factors should go into an

''a value, along with their size. It works by
comparing the log of ‘target_a’ to the sum of logs of
the factor base primes. One loop in this routine
basically goes through the available sizes of factor
base primes to make the “(bits in ‘target_a’) - (bits
in sum of the chosen factors)” value zero.
We want to favor the larger primes as the factors of
the ''a value, because there are more of them, and
also because they affect sieving less (the factors of

''a do not contribute to the sieving phase, so if the
factors are too small they could reduce the yield of
relations because small primes matter more for
sieving).
When we determined the number of factors and the
size of each factor of future ''a values, the next
base polynomial is constructed. In this stage we find
the k factors of each ''a value. The first k-1 of them
are determined randomly from the collection of
factor base primes. The last factor is chosen to get
the product of all the factors as close as possible to
the exact value of ‘target_a’, and so is not selected
randomly. No attempt is made to verify that the
collection of factors chosen is unique; that would
require saving all of the previous 'a' values. The
code does verify that a given factor only occurs
once in a particular ''a value; if that was not the
case then 'b' values would be generated incorrectly.
For factorizations above a certain small size (~25
digits), there are so many possible factor base
primes to choose from that it's very unlikely that a

 4

duplicate ''a value will be chosen randomly. For
factorizations below 25 digits, we only need one or
two ''a values to get many more relations than we
need.

3.2 Parallel algorithm implementation
The parallelism is achieved using the MPI package
for message passing. The program starts with
splitting up into multiple processes where each node
gets one process. For load balancing the
Master/Slave mechanism was used. In this
configuration the master node specifies the jobs of
slave nodes dynamically and each slave node
communicates with the master node only (see
Figure 2).

Figure 2: The slave nodes all
communicate with the the master node.
The master node collects the results and

calculates an answer.

First the master node broadcasts ‘N’ the number to
be factored to every slave node. All communication
is performed in the default communicator called
MPI_COMM_WORLD, which contains the set of
all processes. The slave nodes calculate
initialization data by themselves because before
doing this part there is not any work to do. Then
slaves do all the sieving process for generation of
specified number of full relations. This value is a

factor of
p

relationsmax_
 where relationsmax_

is the total number of needed smooth relations and
p is the number of nodes (running processes) in the

Cluster. Notify that slaves ignore the single/double
large prime variation effect. In fact the cycle
tracking routine not execute in slave nodes to find
smooth relations from the partials [8]. After this, the
slaves send the gathered relations with the
corresponding ''a factors to the master node block
by block. The master node collects the received
relation together and run the cycle tracking routine
on them. When enough relations were collected by

master, it sends termination signal to slaves to stop
the sieving process totally.
This dynamic load distribution strategy by MPI
concluded to better performance results and saves
our cluster resources. Finally the Master does the
linear algebra stage of the factorization and finishes
the factorization process.

4. Performance Evaluation
4.1 Parallel Cluster Environment
The adoption of clusters, collections of PCs
connected by a local network, has virtually
exploded since the introduction of the first Beowulf
cluster in 1994. The attraction lies in the
(potentially) low cost of both hardware and software
and the control that builders/users have over their
system.
The configuration considered in the article is
represented by seventeen loosely-coupled personal
computers connected by a 10/100 Mbps fast
ethernet switch. The switch has an equivalent
function of the interconnection network on a parallel
machine. Table 1 shows some characteristics of
cluster environment.

 Table 1: Cluster environment characteristics
Processor Architecture Intel Pentium 4
Processor clock rate 2.4 GHz
Layer 2 cache size 512 KB
Memory size 256 Mbytes
Switch throughput 10-100 Mbps
Operating System Linux kernel 2.4.20-8

Parallel software environments are designed to
enhance the execution of concurrent tasks,
achieving reasonable parallel speedup. The parallel
programming environment used in this work is
based on MPI standard [7]. The particular
implementation used is mpich 1.2.5.

4.2 Test input
For performance evaluation several numbers of
different sizes are factored with different numbers
of slave nodes. All numbers in the test runs are
composed of two primes of similar size (see Table
2).

4.3 Performance analysis
Execution time
The problems were factored using 2, 4, 8 or 16 slave
nodes or using the serial algorithm. Using more

 5

slave nodes resulted in smaller execution time due
to parallel algorithm scalability.
Figure 3 shows the total execution time in minutes
of the program factoring numbers up to 85 digits.

Parallel vs non-parallel SIQS

0

20

40

60

80

100

50 55 60 65 70 75 80 85 90

decimal size of n

w
al

lc
lo

ck
 ti

m
e

(m
in

)

serial

2 nodes

4 nodes

8 nodes
16 nodes

Figure 3: Total execution time

Figure 4 shows the execution times of the sieving
part only. The minor difference in execution time
between Figure 3 and Figure 4 shows that the
sieving phase is the major part of the program.

Parallel vs non-parallel SIQS (sieving part)

0

20

40

60

80

100

50 55 60 65 70 75 80 85 90

decimal size of n

w
al

lc
lo

ck
 ti

m
e

(m
in

)

serial

2 nodes

4 nodes

8 nodes

16 nodes

Figure 4: Sieving execution time

Speedup
We let f denotes the fraction of the program that
cannot be computed in parallel. Amdahl's law gives
the ideal speedup, pS :

p
TffT

T
T
TS

s
s

s

p

s
p)1(−

+
== (5)

In equation (5), sT denotes the best sequential time
for the best sequential program, pT is the parallel
running time and p is the number of processors.
Figure 5 and Figure 6 shows the speedup for 85
digits number with different numbers of
processors.

Measured vs ideal performance (n=85)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

number of nodes

Sp
ee

du
p linear

absolute

Figure 5: Total speedup

Measured vs ideal performance (sieve part)(n=85)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Speedup

nu
m

be
r o

f n
od

es linear

absolute

Figure 6: Sieve speedup

Efficiency
The efficiency pη , of a p -node computation with

speedup pS is given by:

p

S p
p =η (6)

Figure 7 and figure 8 shows the efficiency when
factoring the 70 digit number with different
numbers of processors.
We factored a 90 digits number (90T) by Linux
Cluster (1 master + 16 slaves) in about 19 minutes,
the serial factorization of this number took 230
minutes. This factorization gives us a speedup factor

about 12
19
230

≈=pS . We also factorized one 100-

digts number (100T) on Linux Cluster in about 139
minutes. The serial factorization of this 100-digits
number takes about 1598 minutes therefore the

speedup will be about 5.11
139
1598

≈=pS .

 6

Table 2: Numbers to factorize in test runs
name number

55T 5258175809655438813858639893821229488068733010929393769 =
1423884062554307828042303239. 3692839851176358470009344271

60T 284866257934932743912606492770903351821538977623644750168793 =
343512685094385609675326922719. 829274347923021180413710079047

65T 24679783651778727241261683683145624763688041326971533109886273487 =
99438150911435425623745393072337. 99438150911435425623745393072337

70T 6879948044669660936327555317971617639562508342877001422926336453690481 =
80314515302210968680376457284607477. 85662573182213597570465880916304653

75T 773676088993114287725345906011845284482909990901212064345044960155918458201=
19145411048449793462060461009919425043.40410523808302300510520380279997790307

80T 35257389446386676168774150173023775979486918446710181319009713526629561703858021=3459350325330
995034448433770811114643743.10191910656811898445072149952892796074747

85T 10149317233338676211436887218628984664874681457691816645973477793306818477682103170327=2001277
706198051700400768264697834121240647.5071418725100350020831375085729219572235441

90T 564281216732686093546301974147866661160062992245411388899347649969328986152613029921955417=563
821056840957267298408080358035243161515823. 1000816145275430229670864901596906920133189879

100T 5249037045637627042519927600536275057851062526634801207570717879489115751685860075675089828882
745901=47092588690464800100217435034030857992358221989249.
111462062112131034453008897167952910392382070002349

Efficiency (n=70)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

number of nodes

Ef
fic

ie
nc

y
(%

)

Figure 7: Total efficiency

Efficiency (sieving part)(n=70)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

number of nodes

Ef
fic

ie
nc

y
(%

)

Figure 8: Sieving efficiency

4.4 Sources of inefficiency
One source of inefficiency is MPI overhead for
communication; this overhead becomes more
important when the length of the factorized number
increases. Since the generated relations go to disk
files, this matter leads to some I/O bottleneck.
There exist some non parallelized parts in our
factoring program, these portions cause to
decrease the efficiency. Non efficient software

and hardware are other important sources of
inefficiency also.

5 Conclusions
In this article we implemented an optimized serial
version of SIQS and then in the second step we
parallelized it for running on a Linux cluster. The
presented benchmarks show that we have a speedup
factor about 14 for 16 slave nodes (in 85-digits
factorization). Also we could obtain an efficiency
more than 90% for 70-digits factorization. These
results together indicate that our serial optimization
and proposed parallel algorithm strategies behave
well.

References
[1] R. Brent, “Recent Progress and Prospects for

Integer Factorization Algorithms”, Lecture
Notes in Comput. Sci. 1858 , pp. 3-22, 2000.

[2] S. Contini, Factoring integers with the self-
initializing quadratic sieve. Master thesis, U.
Georgia, 1997.

[3] R. Crandall and C. Pomerance, PRIME
NUMBERS A Computational Perspective.,
Springer, 2001.

[4] G. Wambach and H. Wettig, “Block Sieving
Algorithms”, 1995.

[5] K. Aoki and H. Ueda, “Sieving Using Bucket
Sort”, Asiacrypt, 2004.

[6] P.L. Mongomery, “A Block Lanczos Algorithm
for Finding Dependencies over GF(2)”,
Advances in cryptography, Eurocrypt ’95,

 7

Lecture Notes in Comput. Sci. 921 (1995), pp.
106-120.

[7] M. Snir, S. Otto, S. Huss-Lederman, D. Walker
and J. Dongarra, PMPI: The Complete
Reference., The MIT Press, 1996.

[8] A. Lenstra and M. Manasse, “Factoring with two
large primes”. Math. Comp., 63:785-798, 1994.

