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An efficient Parallel Implementation of Self Initialization Quadratic 
Sieve for Integer Factorizations Using 

Message Passing Interface (MPI) 
 

 
 
Abstract: Integer factorization is one of the most 
important topics in the complex computation 
domain. With the advent of public key cryptosystems 
it is also of practical importance. One method used 
to factor large composite numbers is the Multiple 
Polynomial Quadratic Sieve. This paper proposes 
an optimized serial implementation of one of the 
best variants of the Multiple Polynomial Quadratic 
Sieve and then presents an efficient parallel version 
of this serial implementation using the Message 
Passing Interface (MPI). We also discuss the 
performance of this implementation. 
 
Keywords: Integer factorization, RSA 
Cryptosystem, Self Initializating Quadratic Sieve 
algorithm, Cluster, Message Passing Interface. 
 
1 Introduction 
The security of modern cryptosystems such as 
Rivest-Shamir-Adelman (RSA) depends on the 
difficulty of factoring the public keys. The Multiple 
Polynomial Quadratic Sieve (MPQS) algorithm is 
currently the fastest algorithm capable of factoring 
integers around 100 digits in size, and is the second 
fastest for integers (and RSA public keys) larger 
than this. 
The complexity of MPQS depends mainly on the 
size of N , the number to be factored. Under 
plausible assumptions the MPQS algorithm has an 
expected run time of ( )( )NNcO lnlnlnexp  [1], 
where c  is a constant (depending on the details of 
the algorithm. For MPQS, 1≈c . For RSA moduli 
the public key N  is of the form qpN ×=  where 
p  and q  equivalent size prime numbers. For this 

reason the MPQS factorization algorithm is very 
well suited for testing the security of RSA 
cryptosystem. In this paper we are interested, 
particularly, in the parallelization of some variants 
of MPQS using MPI on a cluster of workstations. 

Therefore in the first phase we implement an 
optimized serial version and then in the second 
phase we focus on the parallel implementation of 
the serial algorithm and try to improve the 
parallelized solution as much as possible. 
Benchmarks of the implementation are presented in 
the conclusion. 
 
2 The Self Initializing Quadratic Sieve 
algorithm 
2.1 Overview 
This section briefly describes the Self Initializing 
Quadratic Sieve (SIQS) algorithm. Details regarding 
this algorithm can be found in [2]. The basic idea is 
to find a random relation in the form of equation (1). 

NYX mod22 ≡                                                 (1) 
If NYX mod±≡ , then the greatest common 
divisor (gcd) of YX − and N  will be a proper 
factor of N with high probability. To find YX , that 
satisfy equation (1), we first find several relations in 
the form  

Nvu ii mod2 ≡                                                   (2) 

In equation (2), iv  factors into small primes (called 

the factor base) and ii vu ≠2 . Such relations will be 
called smooth.  
When enough relations were generated, then one 
can use some collection of the smooth relations to 
construct a relation of the form (1). Finding which 
collection of relations to use is a linear algebra 
problem. In QS algorithm the numbers iv  are the 
values of one polynomial with integer coefficient as 
below 
( ) Nbxxg −+= 2)(                                          (3) 

In above polynomial, b  is chosen to be ⎡ ⎤N . This 
makes it easy to factorize the iv  by sieving. For 
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details of the process, we refer to the some 
references [2, 3]. 
The problem with using only one polynomial is that 
the values of )(xg  increase in size as x  gets 
bigger. Thus as the algorithm progresses, smooth 
relations becomes less frequent. To escape this 
problem, we want to be able to change to a new 
polynomial when the residues of the current 
polynomial become too big. 
We can attain an improvement in speed by replacing 
the single polynomial )(xg  in basic QS with a 
succession of different polynomials. This variation 
is known as the MPQS algorithm. MPQS sieves 
polynomials of the form 

( ) NbabxxaNbaxxg ba −++=−+= 2222
, 2)(          (4) 

where ba,  are integers and the sieve values x range 
over a fixed interval. However the polynomial 
switching cost in MPQS is expensive. To overcome 
this unwanted cost, Pomerance introduced the SIQS 
method, which involves a fast way to change 
polynomials. Making the polynomial switching 
cheaper allows smaller sieve intervals, which 
increases the probability that sieve values will be 
smooth. The following sections paraphrase 
Contini’s description [2]. 
 
2.2 Initialization stage for all polynomials 
SIQS algorithm uses an intelligent mechanism for 
polynomials initialization at once. For this we find 
primes sqq ,...,1 in the factor base whose product is 

M
N2≈ . This value allows the minimum and 

maximum values of ga,b(x) to have equal magnitude. 
Let ∏=

=
s

l lqa
1

. For this ''a  value, there are 12 −s  

different ''b  values and hence 12 −s  independent 
polynomial with equation (4). 
When the sieving with polynomial i  finishes, we 
can initialize polynomial 1+i  where 

121 1 −≤≤ −si . In fact the ''b  coefficient of 
polynomial i + 1 can be calculated incrementally 
from the ''b  coefficient of polynomial i. Also the 
roots of every prime p  in the factor base (that does 
not divide a ) for polynomial i + 1 ( i

proot ) can be 
computed from the previous roots of polynomial i. 
The idea of generation different ''a  coefficients can 
be used for parallelizing the factorization process. 
 

2.3 Sieve stage 
The most time consuming part of SIQS algorithm is 
sieving stage where we update a very large sieve 
array of length 12 +M  in unpredictable manner. 
For each odd prime p  in the factor base, we update 
the locations with index of ipp +root  for all 
integers i  that falls into sieve interval. Notice that 
the sieving is a very cheap operation in comparison 
with trial division [3]. 
 
2.4 Serial optimization approach 
The critical part of SIQS that is sieving is 
represented schematically in Figure 1. 
 

/* Routine for conventional sieving. This is a sophisticated way 
of computing the following: */ 
for (each prime in factor base) { 
 for (each of the 2 roots for that prime) { 
  start_offset = root; 
  while (start_offset < sieve_size) { 
   sieve_array[start_offset] -= 
    log2(prime); 
   start_offset += prime; 
  } 
 } 
} 

Figure 1: Conventional sieving pseudo code 
 
As you can see from above pseudo code the sieving 
step requires an enormous number of memory 
updates; however, the updates usually cause cache 
misses. A data layout rearrangement technique is 
the most practical way to improve cache locality. To 
utilize this technique we use cache blocking 
mechanism to fit the working set in cache for the 
duration of the sieving [4]. We also use a hashtable-
based method for processing most of the factor base 
primes [5]. 
We added large prime variation support to SIQS 
algorithm. With this variation we could achieve a 
speed-up of approximately a factor 2.5 or more [8]. 
The linear algebra stage uses the “Block Lanczos” 
method to iteratively solve the resulting linear 
system [6].  
 
3 Parallel Algorithm 
From profiling data we conclude that the sieving 
phase is the major portion of the SIQS algorithm. 
From Amdahl’s law any parallelization efforts must 
be focused on this phase to increase efficiency. 
The implementation was based on a SPMD (Simple 
Program Multiple Data) approach and on the 
following procedures: 
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1- In the partitioning phase of parallel algorithm 
design, our focus is on defining a large number 
of small tasks in order to yield what is termed a 
“fine-grained” decomposition of a problem. 
We use the domain decomposition approach to 
problem partitioning. When factoring a large 
input, the number of polynomials )(, xg ba  to 
be sieved is very large. Therefore we can 
assume every polynomial is an independent 
task. 

2- The tasks generated by a partition are intended 
to execute concurrently but cannot, in general, 
execute independently. The computation to be 
performed in one task will typically require 
data associated with another task. Data must 
then be transferred between tasks so as to allow 
computation to proceed. In the partitioning 
phase different tasks require data transferred to 
each other to achieve concurrency. These 
parameters are the number N  to be factored, 
the sieve length and other startup data in 
addition to some other parameters for 
determination of polynomial coefficients. In 
the final phase after every node performed its 
assigned sieving job with its polynomials the 
saved relations must be collected for the 
Master node to complete the factorization 
process. 

3- The agglomeration and mapping phase tend to 
become a single phase in SPMD 
implementation (as the mapping becomes 
implicit to agglomeration). In this phase the 
goal is to agglomerate small tasks to reduce the 
communication costs by increasing locality. 
Also we specify where each task is to execute. 
For these reasons it is better to start every 
node’s task with a separate ''a  coefficient, 
then generate the related polynomials for this  

''a  and do the sieving completely independent 
of other nodes. So by using this new proposed 
technique we can reduce the communication 
costs and increase the efficiency of the 
presented parallel algorithm significantly. 

 
3.1 Domain Decomposition technique with '' a  
coefficients 
At the beginning, all we know from the SIQS 
algorithm is the target value for ''a  coefficient 
(  target_a M

2N= ) to which the product of all 

factors must multiply. All of the factors chosen 
should be about the same size, but we don't know 
how many should be chosen and no duplication with 
future polynomials is allowed. Obviously, if we 
choose an identical set of factors later we'll get 
duplicate relations. Less obviously, if we choose a 
set of factors later that is identical except for one or 
two primes, we will also probably get duplicate 
relations. Finally, the closer the product of the 
factors is to ’target_a’, the higher the yield of the 
resulting polynomials. Finally, ''a  values should 
have at least 3 factors; this will allow the ''a  value 
to generate at least )13(2 −  ''b  values, and is more 
efficient. These turn out to be stringent constraints. 
In addition, in our cluster that we have several 
machines sieving, each machine has to be able to 
build its own ''a  values by itself, without having to 
communicate its choices to the other machines. The 
polynomial initialization routine begins the process 
by figuring out how many factors should go into an 

''a  value, along with their size. It works by 
comparing the log of ‘target_a’ to the sum of logs of 
the factor base primes. One loop in this routine 
basically goes through the available sizes of factor 
base primes to make the “(bits in ‘target_a’) - (bits 
in sum of the chosen factors)” value zero. 
We want to favor the larger primes as the factors of 
the ''a  value, because there are more of them, and 
also because they affect sieving less (the factors of 

''a  do not contribute to the sieving phase, so if the 
factors are too small they could reduce the yield of 
relations because small primes matter more for 
sieving). 
When we determined the number of factors and the 
size of each factor of future ''a  values, the next 
base polynomial is constructed. In this stage we find 
the k factors of each ''a  value. The first k-1 of them 
are determined randomly from the collection of 
factor base primes. The last factor is chosen to get 
the product of all the factors as close as possible to 
the exact value of ‘target_a’, and so is not selected 
randomly. No attempt is made to verify that the 
collection of factors chosen is unique; that would 
require saving all of the previous 'a' values. The 
code does verify that a given factor only occurs 
once in a particular ''a  value; if that was not the 
case then 'b' values would be generated incorrectly. 
For factorizations above a certain small size (~25 
digits), there are so many possible factor base 
primes to choose from that it's very unlikely that a 
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duplicate ''a  value will be chosen randomly. For 
factorizations below 25 digits, we only need one or 
two ''a  values to get many more relations than we 
need. 
 
3.2 Parallel algorithm implementation 
The parallelism is achieved using the MPI package 
for message passing. The program starts with 
splitting up into multiple processes where each node 
gets one process. For load balancing the 
Master/Slave mechanism was used. In this 
configuration the master node specifies the jobs of 
slave nodes dynamically and each slave node 
communicates with the master node only (see 
Figure 2).  
 

Figure 2: The slave nodes all 
communicate with the the master node. 
The master node collects the results and 

calculates an answer. 
 
First the master node broadcasts ‘N’ the number to 
be factored to every slave node. All communication 
is performed in the default communicator called 
MPI_COMM_WORLD, which contains the set of 
all processes. The slave nodes calculate 
initialization data by themselves because before 
doing this part there is not any work to do. Then 
slaves do all the sieving process for generation of 
specified number of full relations. This value is a 

factor of 
p

relationsmax_
 where relationsmax_  

is the total number of needed smooth relations and 
p  is the number of nodes (running processes) in the 

Cluster. Notify that slaves ignore the single/double 
large prime variation effect. In fact the cycle 
tracking routine not execute in slave nodes to find 
smooth relations from the partials [8]. After this, the 
slaves send the gathered relations with the 
corresponding ''a  factors to the master node block 
by block. The master node collects the received 
relation together and run the cycle tracking routine 
on them. When enough relations were collected by 

master, it sends termination signal to slaves to stop 
the sieving process totally. 
This dynamic load distribution strategy by MPI 
concluded to better performance results and saves 
our cluster resources. Finally the Master does the 
linear algebra stage of the factorization and finishes 
the factorization process. 
 
4. Performance Evaluation 
4.1 Parallel Cluster Environment 
The adoption of clusters, collections of PCs 
connected by a local network, has virtually 
exploded since the introduction of the first Beowulf 
cluster in 1994. The attraction lies in the 
(potentially) low cost of both hardware and software 
and the control that builders/users have over their 
system. 
The configuration considered in the article is 
represented by seventeen loosely-coupled personal 
computers connected by a 10/100 Mbps fast 
ethernet switch. The switch has an equivalent 
function of the interconnection network on a parallel 
machine. Table 1 shows some characteristics of 
cluster environment. 
 

 Table 1: Cluster environment characteristics 
Processor Architecture Intel Pentium 4 
Processor clock rate 2.4 GHz 
Layer 2 cache size 512 KB 
Memory size 256 Mbytes 
Switch throughput 10-100 Mbps 
Operating System Linux kernel 2.4.20-8 

 
Parallel software environments are designed to 
enhance the execution of concurrent tasks, 
achieving reasonable parallel speedup. The parallel 
programming environment used in this work is 
based on MPI standard [7]. The particular 
implementation used is mpich 1.2.5. 
 
4.2 Test input 
For performance evaluation several numbers of 
different sizes are factored with different numbers 
of slave nodes. All numbers in the test runs are 
composed of two primes of similar size (see Table 
2). 
 
4.3 Performance analysis 
Execution time 
The problems were factored using 2, 4, 8 or 16 slave 
nodes or using the serial algorithm. Using more 
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slave nodes resulted in smaller execution time due 
to parallel algorithm scalability. 
Figure 3 shows the total execution time in minutes 
of the program factoring numbers up to 85 digits. 
 

Parallel vs non-parallel SIQS
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Figure 3: Total execution time 
 
Figure 4 shows the execution times of the sieving 
part only. The minor difference in execution time 
between Figure 3 and Figure 4 shows that the 
sieving phase is the major part of the program. 
 

Parallel vs non-parallel SIQS (sieving part)
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Figure 4: Sieving execution time 

 
Speedup 
We let f  denotes the fraction of the program that 
cannot be computed in parallel. Amdahl's law gives 
the ideal speedup, pS : 

  

p
TffT

T
T
TS

s
s

s

p

s
p )1( −

+
==                              (5) 

In equation (5), sT  denotes the best sequential time 
for the best sequential program, pT is the parallel 
running time and p  is the number of processors. 
Figure 5 and Figure 6 shows the speedup for 85 
digits number with different numbers of 
processors. 
 

Measured vs ideal performance (n=85)
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Figure 5: Total speedup 

 
Measured vs ideal performance (sieve part)(n=85)
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Figure 6: Sieve speedup 
 
Efficiency 
The efficiency pη , of a p -node computation with 

speedup pS  is given by: 

     
p

S p
p =η                                     (6) 

Figure 7 and figure 8 shows the efficiency when 
factoring the 70 digit number with different 
numbers of processors. 
We factored a 90 digits number ( 90T ) by Linux 
Cluster (1 master + 16 slaves) in about 19 minutes, 
the serial factorization of this number took 230 
minutes. This factorization gives us a speedup factor 

about 12
19
230

≈=pS . We also factorized one 100-

digts number ( 100T ) on Linux Cluster in about 139 
minutes. The serial factorization of this 100-digits 
number takes about 1598 minutes therefore the 

speedup will be about 5.11
139
1598

≈=pS . 
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Table 2: Numbers to factorize in test runs 
name number 

55T  5258175809655438813858639893821229488068733010929393769 = 
1423884062554307828042303239. 3692839851176358470009344271 

60T  284866257934932743912606492770903351821538977623644750168793 = 
343512685094385609675326922719. 829274347923021180413710079047 

65T  24679783651778727241261683683145624763688041326971533109886273487 = 
99438150911435425623745393072337. 99438150911435425623745393072337 

70T  6879948044669660936327555317971617639562508342877001422926336453690481 = 
80314515302210968680376457284607477. 85662573182213597570465880916304653 

75T  773676088993114287725345906011845284482909990901212064345044960155918458201= 
19145411048449793462060461009919425043.40410523808302300510520380279997790307 

80T  35257389446386676168774150173023775979486918446710181319009713526629561703858021=3459350325330
995034448433770811114643743.10191910656811898445072149952892796074747 

85T  10149317233338676211436887218628984664874681457691816645973477793306818477682103170327=2001277
706198051700400768264697834121240647.5071418725100350020831375085729219572235441 

90T  564281216732686093546301974147866661160062992245411388899347649969328986152613029921955417=563
821056840957267298408080358035243161515823. 1000816145275430229670864901596906920133189879 

100T  5249037045637627042519927600536275057851062526634801207570717879489115751685860075675089828882
745901=47092588690464800100217435034030857992358221989249. 
111462062112131034453008897167952910392382070002349 
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Figure 7: Total efficiency 
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Figure 8: Sieving efficiency 

 
4.4 Sources of inefficiency 
One source of inefficiency is MPI overhead for 
communication; this overhead becomes more 
important when the length of the factorized number 
increases. Since the generated relations go to disk 
files, this matter leads to some I/O bottleneck. 
There exist some non parallelized parts in our 
factoring program, these portions cause to 
decrease the efficiency. Non efficient software 

and hardware are other important sources of 
inefficiency also. 
 
5 Conclusions 
In this article we implemented an optimized serial 
version of SIQS and then in the second step we 
parallelized it for running on a Linux cluster. The 
presented benchmarks show that we have a speedup 
factor about 14 for 16 slave nodes (in 85-digits 
factorization). Also we could obtain an efficiency 
more than 90% for 70-digits factorization. These 
results together indicate that our serial optimization 
and proposed parallel algorithm strategies behave 
well. 
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